Trading

  • Trading Bot

    For this project we will be using Freqtrade. An open source trading bot. With some very nice features, including backtesting, parameter optimization and strategy definitions. We can run it locally in a docker container. FreqtradeDocumentation Running the software To run the file we need a Dockerfile and a docker-compose.yml file. Dockerfile 1 2 3 4 FROM freqtradeorg/freqtrade:stable AS base WORKDIR /freqtrade EXPOSE 8080 COPY --chown=ftuser:ftuser . . Docker compose file 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 --- services: freqtrade: image: freqtradeorg/freqtrade:stable restart: unless-stopped container_name: freqtrade volumes: - ".

    Subsections of Trading

    Trading Bot

    For this project we will be using Freqtrade. An open source trading bot. With some very nice features, including backtesting, parameter optimization and strategy definitions. We can run it locally in a docker container.

    FreqtradeDocumentation

    Running the software

    To run the file we need a Dockerfile and a docker-compose.yml file.

    Dockerfile

    1
    2
    3
    4
    
    FROM freqtradeorg/freqtrade:stable AS base
    WORKDIR /freqtrade
    EXPOSE 8080
    COPY --chown=ftuser:ftuser . .

    Docker compose file

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    
    ---
    services:
      freqtrade:
        image: freqtradeorg/freqtrade:stable
        restart: unless-stopped
        container_name: freqtrade
        volumes:
          - "./user_data:/freqtrade/user_data"
        ports:
          - "0.0.0.0:8080:8080"
        command: >
          trade
          --logfile /freqtrade/user_data/logs/freqtrade.log
          --db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
          --config /freqtrade/user_data/config-all-space.json
          --strategy NASOSv4      
      freqtrade2:
        image: freqtradeorg/freqtrade:stable
        restart: unless-stopped
        container_name: freqtrade2
        volumes:
          - "./user_data:/freqtrade/user_data"
        ports:
          - "0.0.0.0:8081:8080"
        command: >
          trade
          --logfile /freqtrade/user_data/logs/freqtrade.log
          --db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
          --config /freqtrade/user_data/config-all-space.json
          --strategy ElliotV8_original_ichiv3      

    Config file

      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    
    {
        "max_open_trades": 10,
        "stake_currency": "USDT",
        "stake_amount": "unlimited",
        "tradable_balance_ratio": 0.99,
        "fiat_display_currency": "EUR",
        "dry_run": true,
        "dry_run_wallet": 1000,
        "cancel_open_orders_on_exit": false,
        "trading_mode": "spot",
        "margin_mode": "",
        "dataformat_ohlcv": "json",
        "dataformat_trades": "json",
        "unfilledtimeout": {
            "entry": 10,
            "exit": 10,
            "exit_timeout_count": 0,
            "unit": "minutes"
        },
        "entry_pricing": {
            "price_side": "same",
            "use_order_book": true,
            "order_book_top": 1,
            "price_last_balance": 0.0,
            "check_depth_of_market": {
                "enabled": false,
                "bids_to_ask_delta": 1
            }
        },
        "exit_pricing":{
            "price_side": "same",
            "use_order_book": true,
            "order_book_top": 1
        },
        "exchange": {
            "name": "kucoin",
            "key": "<your_kucoin_key>",
            "secret": "<your_kucoin_secret>",
            "password": "<your_kucoin_password>",
            "ccxt_config": {},
            "ccxt_async_config": {},
            "pair_whitelist": [
                "NEAR/USDT",
                "RENDER/USDT",
                "INJ/USDT",
                "GRT/USDT",
                "AKT/USDT",
                "AIOZ/USDT",
                "FET/USDT",
                "HNT/USDT",
                "JASMY/USDT",
                "HAI/USDT",
                "DOGS/USDT",
                "XRP/USDT",
                "WIF/USDT",
                "DOGE/USDT",
                "LTC/USDT",
                "TON/USDT",
                "LINK/USDT",
                "SHIB/USDT",
                "FLOKI/USDT",
                "DOT/USDT",
                "ADA/USDT",
                "KAS/USDT",
                "ICP/USDT",
                "XMR/USDT",
                "SOL/USDT",
                "APT/USDT",
                "ETC/USDT",
                "XLM/USDT",
                "STX/USDT",
                "SUI/USDT",
                "CRO/USDT",
                "IMX/USDT",
                "FIL/USDT",
                "MNT/USDT"
            ],
            "pair_blacklist": [
            ]
        },
        "pairlists": [
            {"method": "StaticPairList"}
        ],
        "telegram": {
            "enabled": false,
            "token": "",
            "chat_id": ""
        },
        "api_server": {
            "enabled": true,
            "listen_ip_address": "0.0.0.0",
            "listen_port": 8080,
            "verbosity": "error",
            "enable_openapi": false,
            "jwt_secret_key": "<your_jwt_key>",
            "ws_token": "<your_token>",
            "CORS_origins": [
                "http://localhost:8080"
            ],
            "username": "freqtrader",
            "password": "<your_password>"
        },
        "bot_name": "freqtrade",
        "initial_state": "running",
        "force_entry_enable": false,
        "internals": {
            "process_throttle_secs": 5
        }
    }
    Important

    Don’t forget to update the following data in the config file:

    • Exchange name
    • Exchange key
    • Exchange secret
    • Exchange password
    • API server JWT secret key
    • API server WS token
    • API username
    • API password

    You can run the application with docker-compose up -d. It will launch the containers on your system.

    To access the UI you can visit https://localhost:8080. You log in with the api username and api password you defined in the config file.

    If you renamed the config file, you need to update the command in the docker-compose.yml file.

    Running commands

    Backtesting

    1
    
    docker-compose run freqtrade backtesting --export trades --stake-amount 100 --strategy-list BBRSIOptimizedStrategy VerhaertHedgeStrategy -i 15m

    img1.png img1.png

    Hyperopt

    1
    
        docker-compose run freqtrade hyperopt --hyperopt-loss SharpeHyperOptLoss --strategy VerhaertHedgeStrategy --spaces roi stoploss trades buy sell trailing -e 2500 -i 15m --timerange 20240501- --analyze-per-epoch --stake-amount 100 --max-open-trades 10 --min-trades 35

    img2.png img2.png

    Download data

    1
    
    docker-compose run freqtrade download-data --exchange kucoin -t 1m 5m 15m 1h 4h 1d --erase --timerange 20240101-

    img3.png img3.png

    Strategies

    Strategies are used to determine how the bot takes trades. Lucky for us, a lot of strategies can be found on online. A nice resource is: https://www.dutchalgotrading.com/strategy-league/ with many thanks to Dutch Algotrading for providing this resource. He tested a lot of strategies and created a list of the most successful strategies.

    Other strategies can be found on the Freqtrade github itself: https://github.com/freqtrade/freqtrade-strategies.

    All we need to do is add them to the user_data/strategies folder. I’ll post some here for you to play with:

    NASOSv4

      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    
    # for live trailing_stop = False and use_custom_stoploss = True
    # for backtest trailing_stop = True and use_custom_stoploss = False
    
    # --- Do not remove these libs ---
    # --- Do not remove these libs ---
    from logging import FATAL
    from freqtrade.strategy.interface import IStrategy
    from typing import Dict, List
    from functools import reduce
    from pandas import DataFrame
    # --------------------------------
    import talib.abstract as ta
    import numpy as np
    import freqtrade.vendor.qtpylib.indicators as qtpylib
    import datetime
    from technical.util import resample_to_interval, resampled_merge
    from datetime import datetime, timedelta
    from freqtrade.persistence import Trade
    from freqtrade.strategy import stoploss_from_open, merge_informative_pair, DecimalParameter, IntParameter, CategoricalParameter
    import technical.indicators as ftt
    
    # @Rallipanos
    # @pluxury
    
    # Buy hyperspace params:
    buy_params = {
        "base_nb_candles_buy": 8,
        "ewo_high": 2.403,
        "ewo_high_2": -5.585,
        "ewo_low": -14.378,
        "lookback_candles": 3,
        "low_offset": 0.984,
        "low_offset_2": 0.942,
        "profit_threshold": 1.008,
        "rsi_buy": 72
    }
    
    # Sell hyperspace params:
    sell_params = {
        "base_nb_candles_sell": 16,
        "high_offset": 1.084,
        "high_offset_2": 1.401,
        "pHSL": -0.15,
        "pPF_1": 0.016,
        "pPF_2": 0.024,
        "pSL_1": 0.014,
        "pSL_2": 0.022
    }
    
    
    def EWO(dataframe, ema_length=5, ema2_length=35):
        df = dataframe.copy()
        ema1 = ta.EMA(df, timeperiod=ema_length)
        ema2 = ta.EMA(df, timeperiod=ema2_length)
        emadif = (ema1 - ema2) / df['low'] * 100
        return emadif
    
    
    class NASOSv4(IStrategy):
        INTERFACE_VERSION = 2
    
        # ROI table:
        minimal_roi = {
            # "0": 0.283,
            # "40": 0.086,
            # "99": 0.036,
            "0": 10
        }
    
        # Stoploss:
        stoploss = -0.15
    
        # SMAOffset
        base_nb_candles_buy = IntParameter(
            2, 20, default=buy_params['base_nb_candles_buy'], space='buy', optimize=True)
        base_nb_candles_sell = IntParameter(
            2, 25, default=sell_params['base_nb_candles_sell'], space='sell', optimize=True)
        low_offset = DecimalParameter(
            0.9, 0.99, default=buy_params['low_offset'], space='buy', optimize=False)
        low_offset_2 = DecimalParameter(
            0.9, 0.99, default=buy_params['low_offset_2'], space='buy', optimize=False)
        high_offset = DecimalParameter(
            0.95, 1.1, default=sell_params['high_offset'], space='sell', optimize=True)
        high_offset_2 = DecimalParameter(
            0.99, 1.5, default=sell_params['high_offset_2'], space='sell', optimize=True)
    
        # Protection
        fast_ewo = 50
        slow_ewo = 200
    
        lookback_candles = IntParameter(
            1, 24, default=buy_params['lookback_candles'], space='buy', optimize=True)
    
        profit_threshold = DecimalParameter(1.0, 1.03,
                                            default=buy_params['profit_threshold'], space='buy', optimize=True)
    
        ewo_low = DecimalParameter(-20.0, -8.0,
                                   default=buy_params['ewo_low'], space='buy', optimize=False)
        ewo_high = DecimalParameter(
            2.0, 12.0, default=buy_params['ewo_high'], space='buy', optimize=False)
    
        ewo_high_2 = DecimalParameter(
            -6.0, 12.0, default=buy_params['ewo_high_2'], space='buy', optimize=False)
    
        rsi_buy = IntParameter(50, 100, default=buy_params['rsi_buy'], space='buy', optimize=False)
    
        # trailing stoploss hyperopt parameters
        # hard stoploss profit
        pHSL = DecimalParameter(-0.200, -0.040, default=-0.15, decimals=3,
                                space='sell', optimize=False, load=True)
        # profit threshold 1, trigger point, SL_1 is used
        pPF_1 = DecimalParameter(0.008, 0.020, default=0.016, decimals=3,
                                 space='sell', optimize=False, load=True)
        pSL_1 = DecimalParameter(0.008, 0.020, default=0.014, decimals=3,
                                 space='sell', optimize=False, load=True)
    
        # profit threshold 2, SL_2 is used
        pPF_2 = DecimalParameter(0.040, 0.100, default=0.024, decimals=3,
                                 space='sell', optimize=False, load=True)
        pSL_2 = DecimalParameter(0.020, 0.070, default=0.022, decimals=3,
                                 space='sell', optimize=False, load=True)
    
        # Trailing stop:
        trailing_stop = True
        trailing_stop_positive = 0.001
        trailing_stop_positive_offset = 0.016
        trailing_only_offset_is_reached = True
    
        # Sell signal
        use_sell_signal = True
        sell_profit_only = False
        sell_profit_offset = 0.01
        ignore_roi_if_buy_signal = False
    
        # Optional order time in force.
        order_time_in_force = {
            'buy': 'gtc',
            'sell': 'ioc'
        }
    
        # Optimal timeframe for the strategy
        timeframe = '15m'
        inf_1h = '1h'
    
        process_only_new_candles = True
        startup_candle_count = 20
        use_custom_stoploss = False
    
        plot_config = {
            'main_plot': {
                'ma_buy': {'color': 'orange'},
                'ma_sell': {'color': 'orange'},
            },
        }
    
        slippage_protection = {
            'retries': 3,
            'max_slippage': -0.02
        }
    
        # Custom Trailing Stoploss by Perkmeister
    
        def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
                            current_rate: float, current_profit: float, **kwargs) -> float:
    
            # # hard stoploss profit
            HSL = self.pHSL.value
            PF_1 = self.pPF_1.value
            SL_1 = self.pSL_1.value
            PF_2 = self.pPF_2.value
            SL_2 = self.pSL_2.value
    
            # For profits between PF_1 and PF_2 the stoploss (sl_profit) used is linearly interpolated
            # between the values of SL_1 and SL_2. For all profits above PL_2 the sl_profit value
            # rises linearly with current profit, for profits below PF_1 the hard stoploss profit is used.
    
            if (current_profit > PF_2):
                sl_profit = SL_2 + (current_profit - PF_2)
            elif (current_profit > PF_1):
                sl_profit = SL_1 + ((current_profit - PF_1)*(SL_2 - SL_1)/(PF_2 - PF_1))
            else:
                sl_profit = HSL
    
            # if current_profit < 0.001 and current_time - timedelta(minutes=600) > trade.open_date_utc:
            #     return -0.005
    
            return stoploss_from_open(sl_profit, current_profit)
    
        def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
                               rate: float, time_in_force: str, sell_reason: str,
                               current_time: datetime, **kwargs) -> bool:
    
            dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
            last_candle = dataframe.iloc[-1]
    
            if (last_candle is not None):
                if (sell_reason in ['sell_signal']):
                    if (last_candle['hma_50']*1.149 > last_candle['ema_100']) and (last_candle['close'] < last_candle['ema_100']*0.951):  # *1.2
                        return False
    
            # slippage
            try:
                state = self.slippage_protection['__pair_retries']
            except KeyError:
                state = self.slippage_protection['__pair_retries'] = {}
    
            candle = dataframe.iloc[-1].squeeze()
    
            slippage = (rate / candle['close']) - 1
            if slippage < self.slippage_protection['max_slippage']:
                pair_retries = state.get(pair, 0)
                if pair_retries < self.slippage_protection['retries']:
                    state[pair] = pair_retries + 1
                    return False
    
            state[pair] = 0
    
            return True
    
        def informative_pairs(self):
            pairs = self.dp.current_whitelist()
            informative_pairs = [(pair, '1h') for pair in pairs]
            return informative_pairs
    
        def informative_1h_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            assert self.dp, "DataProvider is required for multiple timeframes."
            # Get the informative pair
            informative_1h = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_1h)
            # EMA
            # informative_1h['ema_50'] = ta.EMA(informative_1h, timeperiod=50)
            # informative_1h['ema_200'] = ta.EMA(informative_1h, timeperiod=200)
            # # RSI
            # informative_1h['rsi'] = ta.RSI(informative_1h, timeperiod=14)
    
            # bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
            # informative_1h['bb_lowerband'] = bollinger['lower']
            # informative_1h['bb_middleband'] = bollinger['mid']
            # informative_1h['bb_upperband'] = bollinger['upper']
    
            return informative_1h
    
        def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
    
            # Calculate all ma_buy values
            for val in self.base_nb_candles_buy.range:
                dataframe[f'ma_buy_{val}'] = ta.EMA(dataframe, timeperiod=val)
    
            # Calculate all ma_sell values
            for val in self.base_nb_candles_sell.range:
                dataframe[f'ma_sell_{val}'] = ta.EMA(dataframe, timeperiod=val)
    
            dataframe['hma_50'] = qtpylib.hull_moving_average(dataframe['close'], window=50)
            dataframe['ema_100'] = ta.EMA(dataframe, timeperiod=100)
    
            dataframe['sma_9'] = ta.SMA(dataframe, timeperiod=9)
            # Elliot
            dataframe['EWO'] = EWO(dataframe, self.fast_ewo, self.slow_ewo)
    
            # RSI
            dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
            dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4)
            dataframe['rsi_slow'] = ta.RSI(dataframe, timeperiod=20)
    
            return dataframe
    
        def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            informative_1h = self.informative_1h_indicators(dataframe, metadata)
            dataframe = merge_informative_pair(
                dataframe, informative_1h, self.timeframe, self.inf_1h, ffill=True)
    
            # The indicators for the normal (5m) timeframe
            dataframe = self.normal_tf_indicators(dataframe, metadata)
    
            return dataframe
    
        def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
    
            dont_buy_conditions = []
    
            dont_buy_conditions.append(
                (
                    # don't buy if there isn't 3% profit to be made
                    (dataframe['close_1h'].rolling(self.lookback_candles.value).max()
                     < (dataframe['close'] * self.profit_threshold.value))
                )
            )
    
            dataframe.loc[
                (
                    (dataframe['rsi_fast'] < 35) &
                    (dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset.value)) &
                    (dataframe['EWO'] > self.ewo_high.value) &
                    (dataframe['rsi'] < self.rsi_buy.value) &
                    (dataframe['volume'] > 0) &
                    (dataframe['close'] < (
                        dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value))
                ),
                ['buy', 'buy_tag']] = (1, 'ewo1')
    
            dataframe.loc[
                (
                    (dataframe['rsi_fast'] < 35) &
                    (dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset_2.value)) &
                    (dataframe['EWO'] > self.ewo_high_2.value) &
                    (dataframe['rsi'] < self.rsi_buy.value) &
                    (dataframe['volume'] > 0) &
                    (dataframe['close'] < (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value)) &
                    (dataframe['rsi'] < 25)
                ),
                ['buy', 'buy_tag']] = (1, 'ewo2')
    
            dataframe.loc[
                (
                    (dataframe['rsi_fast'] < 35) &
                    (dataframe['close'] < (dataframe[f'ma_buy_{self.base_nb_candles_buy.value}'] * self.low_offset.value)) &
                    (dataframe['EWO'] < self.ewo_low.value) &
                    (dataframe['volume'] > 0) &
                    (dataframe['close'] < (
                        dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value))
                ),
                ['buy', 'buy_tag']] = (1, 'ewolow')
    
            if dont_buy_conditions:
                for condition in dont_buy_conditions:
                    dataframe.loc[condition, 'buy'] = 0
    
            return dataframe
    
        def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            conditions = []
    
            conditions.append(
                ((dataframe['close'] > dataframe['sma_9']) &
                    (dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset_2.value)) &
                    (dataframe['rsi'] > 50) &
                    (dataframe['volume'] > 0) &
                    (dataframe['rsi_fast'] > dataframe['rsi_slow'])
                 )
                |
                (
                    (dataframe['close'] < dataframe['hma_50']) &
                    (dataframe['close'] > (dataframe[f'ma_sell_{self.base_nb_candles_sell.value}'] * self.high_offset.value)) &
                    (dataframe['volume'] > 0) &
                    (dataframe['rsi_fast'] > dataframe['rsi_slow'])
                )
    
            )
    
            if conditions:
                dataframe.loc[
                    reduce(lambda x, y: x | y, conditions),
                    'sell'
                ]=1
    
            return dataframe

    NFI5MOHO_WIP

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
     744
     745
     746
     747
     748
     749
     750
     751
     752
     753
     754
     755
     756
     757
     758
     759
     760
     761
     762
     763
     764
     765
     766
     767
     768
     769
     770
     771
     772
     773
     774
     775
     776
     777
     778
     779
     780
     781
     782
     783
     784
     785
     786
     787
     788
     789
     790
     791
     792
     793
     794
     795
     796
     797
     798
     799
     800
     801
     802
     803
     804
     805
     806
     807
     808
     809
     810
     811
     812
     813
     814
     815
     816
     817
     818
     819
     820
     821
     822
     823
     824
     825
     826
     827
     828
     829
     830
     831
     832
     833
     834
     835
     836
     837
     838
     839
     840
     841
     842
     843
     844
     845
     846
     847
     848
     849
     850
     851
     852
     853
     854
     855
     856
     857
     858
     859
     860
     861
     862
     863
     864
     865
     866
     867
     868
     869
     870
     871
     872
     873
     874
     875
     876
     877
     878
     879
     880
     881
     882
     883
     884
     885
     886
     887
     888
     889
     890
     891
     892
     893
     894
     895
     896
     897
     898
     899
     900
     901
     902
     903
     904
     905
     906
     907
     908
     909
     910
     911
     912
     913
     914
     915
     916
     917
     918
     919
     920
     921
     922
     923
     924
     925
     926
     927
     928
     929
     930
     931
     932
     933
     934
     935
     936
     937
     938
     939
     940
     941
     942
     943
     944
     945
     946
     947
     948
     949
     950
     951
     952
     953
     954
     955
     956
     957
     958
     959
     960
     961
     962
     963
     964
     965
     966
     967
     968
     969
     970
     971
     972
     973
     974
     975
     976
     977
     978
     979
     980
     981
     982
     983
     984
     985
     986
     987
     988
     989
     990
     991
     992
     993
     994
     995
     996
     997
     998
     999
    1000
    1001
    1002
    1003
    1004
    1005
    1006
    1007
    1008
    1009
    1010
    1011
    1012
    1013
    1014
    1015
    1016
    1017
    1018
    1019
    1020
    1021
    1022
    1023
    1024
    1025
    1026
    1027
    1028
    1029
    1030
    1031
    1032
    1033
    1034
    1035
    1036
    1037
    1038
    1039
    1040
    1041
    1042
    1043
    1044
    1045
    1046
    1047
    1048
    1049
    1050
    1051
    1052
    1053
    1054
    1055
    1056
    1057
    1058
    1059
    1060
    1061
    1062
    1063
    1064
    1065
    1066
    1067
    1068
    1069
    1070
    1071
    1072
    1073
    1074
    1075
    1076
    1077
    1078
    1079
    1080
    1081
    1082
    1083
    1084
    1085
    1086
    1087
    1088
    1089
    1090
    1091
    1092
    1093
    1094
    1095
    1096
    1097
    1098
    1099
    1100
    1101
    1102
    1103
    1104
    1105
    1106
    1107
    1108
    1109
    1110
    1111
    1112
    1113
    1114
    1115
    1116
    1117
    1118
    1119
    1120
    1121
    1122
    1123
    1124
    1125
    1126
    1127
    1128
    1129
    1130
    1131
    1132
    1133
    1134
    1135
    1136
    1137
    1138
    1139
    1140
    1141
    1142
    1143
    1144
    1145
    1146
    1147
    1148
    1149
    1150
    1151
    1152
    1153
    1154
    1155
    1156
    1157
    1158
    1159
    1160
    1161
    1162
    1163
    1164
    1165
    1166
    1167
    1168
    1169
    1170
    1171
    1172
    1173
    1174
    1175
    1176
    1177
    1178
    1179
    1180
    1181
    1182
    1183
    1184
    1185
    1186
    1187
    1188
    
    import freqtrade.vendor.qtpylib.indicators as qtpylib
    import numpy as np
    import talib.abstract as ta
    from freqtrade.strategy.interface import IStrategy
    from freqtrade.strategy import (merge_informative_pair,
                                    DecimalParameter, IntParameter, CategoricalParameter)
    from pandas import DataFrame
    from functools import reduce
    from freqtrade.persistence import Trade
    from datetime import datetime
    
    
    ###########################################################################################################
    ##                NostalgiaForInfinityV5 by iterativ                                                     ##
    ##                                                                                                       ##
    ##    Strategy for Freqtrade https://github.com/freqtrade/freqtrade                                      ##
    ##                                                                                                       ##
    ###########################################################################################################
    ##               GENERAL RECOMMENDATIONS                                                                 ##
    ##                                                                                                       ##
    ##   For optimal performance, suggested to use between 4 and 6 open trades, with unlimited stake.        ##
    ##   A pairlist with 40 to 80 pairs. Volume pairlist works well.                                         ##
    ##   Prefer stable coin (USDT, BUSDT etc) pairs, instead of BTC or ETH pairs.                            ##
    ##   Highly recommended to blacklist leveraged tokens (*BULL, *BEAR, *UP, *DOWN etc).                    ##
    ##   Ensure that you don't override any variables in you config.json. Especially                         ##
    ##   the timeframe (must be 5m).                                                                         ##
    ##     use_sell_signal must set to true (or not set at all).                                             ##
    ##     sell_profit_only must set to false (or not set at all).                                           ##
    ##     ignore_roi_if_buy_signal must set to true (or not set at all).                                    ##
    ##                                                                                                       ##
    ###########################################################################################################
    ##               DONATIONS                                                                               ##
    ##                                                                                                       ##
    ##   Absolutely not required. However, will be accepted as a token of appreciation.                      ##
    ##                                                                                                       ##
    ##   BTC: bc1qvflsvddkmxh7eqhc4jyu5z5k6xcw3ay8jl49sk                                                     ##
    ##   ETH (ERC20): 0x83D3cFb8001BDC5d2211cBeBB8cB3461E5f7Ec91                                             ##
    ##   BEP20/BSC (ETH, BNB, ...): 0x86A0B21a20b39d16424B7c8003E4A7e12d78ABEe                               ##
    ##                                                                                                       ##
    ###########################################################################################################
    
    # 20210624
    # NostalgiaForInfinityV5 + MultiOffsetLamboV0 + Hyper-optimized some parameters.
    
    # I hope you do enough testing before proceeding.
    # Thank you to those who created these strategies.
    
    class NFI5MOHO_WIP(IStrategy):
        INTERFACE_VERSION = 2
    
        # Optional order type mapping.
        order_types = {
            'buy': 'limit',
            'sell': 'limit',
            'trailing_stop_loss': 'limit',
            'stoploss': 'limit',
            'stoploss_on_exchange': False
        }
    
        #############################################################
    
        buy_params = {
            #############
            # Enable/Disable conditions
            "buy_condition_1_enable": True,
            "buy_condition_2_enable": True,
            "buy_condition_3_enable": True,
            "buy_condition_4_enable": True,
            "buy_condition_5_enable": True,
            "buy_condition_6_enable": True,
            "buy_condition_7_enable": True,
            "buy_condition_8_enable": True,
            "buy_condition_9_enable": True,
            "buy_condition_10_enable": True,
            "buy_condition_11_enable": True,
            "buy_condition_12_enable": True,
            "buy_condition_13_enable": True,
            "buy_condition_14_enable": True,
            "buy_condition_15_enable": True,
            "buy_condition_16_enable": True,
            "buy_condition_17_enable": True,
            "buy_condition_18_enable": True,
            "buy_condition_19_enable": True,
            "buy_condition_20_enable": True,
            "buy_condition_21_enable": True,
            # Hyperopt
            # Multi Offset
    	"""
    	"base_nb_candles_buy": 42,
            "buy_chop_min_19": 29.3,
            "buy_rsi_1h_min_19": 52.4,
            "ewo_high": 5.262,
            "ewo_low": -8.164,
            "low_offset_ema": 0.984,
            "low_offset_kama": 0.919,
            "low_offset_sma": 0.97,
            "low_offset_t3": 0.904,
            "low_offset_trima": 0.984,
    	"""
    	"base_nb_candles_buy": 72,
            "buy_chop_min_19": 58.2,
            "buy_rsi_1h_min_19": 65.3,
            "ewo_high": 3.319,
            "ewo_low": -11.101,
            "low_offset_ema": 0.929,
            "low_offset_kama": 0.972,
            "low_offset_sma": 0.955,
            "low_offset_t3": 0.975,
            "low_offset_trima": 0.949,
        }
    
        sell_params = {
            #############
            # Enable/Disable conditions
            "sell_condition_1_enable": True,
            "sell_condition_2_enable": True,
            "sell_condition_3_enable": True,
            "sell_condition_4_enable": True,
            "sell_condition_5_enable": True,
            "sell_condition_6_enable": True,
            "sell_condition_7_enable": True,
            "sell_condition_8_enable": True,
            #############
            # Hyperopt
            # Multi Offset
            "base_nb_candles_sell": 34,
            "high_offset_ema": 1.047,
            "high_offset_kama": 1.07,
            "high_offset_sma": 1.051,
            "high_offset_t3": 0.999,
            "high_offset_trima": 1.096,
        }
    
        # ROI table:
        minimal_roi = {
            "0": 0.111,
            "13": 0.048,
            "50": 0.015,
            "61": 0.01
        }
    
        stoploss = -0.99
    
        # Multi Offset
        base_nb_candles_buy = IntParameter(
            5, 80, default=20, load=True, space='buy', optimize=True)
        base_nb_candles_sell = IntParameter(
            5, 80, default=20, load=True, space='sell', optimize=True)
        low_offset_sma = DecimalParameter(
            0.9, 0.99, default=0.958, load=True, space='buy', optimize=True)
        high_offset_sma = DecimalParameter(
            0.99, 1.1, default=1.012, load=True, space='sell', optimize=True)
        low_offset_ema = DecimalParameter(
            0.9, 0.99, default=0.958, load=True, space='buy', optimize=True)
        high_offset_ema = DecimalParameter(
            0.99, 1.1, default=1.012, load=True, space='sell', optimize=True)
        low_offset_trima = DecimalParameter(
            0.9, 0.99, default=0.958, load=True, space='buy', optimize=True)
        high_offset_trima = DecimalParameter(
            0.99, 1.1, default=1.012, load=True, space='sell', optimize=True)
        low_offset_t3 = DecimalParameter(
            0.9, 0.99, default=0.958, load=True, space='buy', optimize=True)
        high_offset_t3 = DecimalParameter(
            0.99, 1.1, default=1.012, load=True, space='sell', optimize=True)
        low_offset_kama = DecimalParameter(
            0.9, 0.99, default=0.958, load=True, space='buy', optimize=True)
        high_offset_kama = DecimalParameter(
            0.99, 1.1, default=1.012, load=True, space='sell', optimize=True)
    
        # Protection
        ewo_low = DecimalParameter(
            -20.0, -8.0, default=-20.0, load=True, space='buy', optimize=True)
        ewo_high = DecimalParameter(
            2.0, 12.0, default=6.0, load=True, space='buy', optimize=True)
        fast_ewo = IntParameter(
            10, 50, default=50, load=True, space='buy', optimize=False)
        slow_ewo = IntParameter(
            100, 200, default=200, load=True, space='buy', optimize=False)
    
        # MA list
        ma_types = ['sma', 'ema', 'trima', 't3', 'kama']
        ma_map = {
            'sma': {
                'low_offset': low_offset_sma.value,
                'high_offset': high_offset_sma.value,
                'calculate': ta.SMA
            },
            'ema': {
                'low_offset': low_offset_ema.value,
                'high_offset': high_offset_ema.value,
                'calculate': ta.EMA
            },
            'trima': {
                'low_offset': low_offset_trima.value,
                'high_offset': high_offset_trima.value,
                'calculate': ta.TRIMA
            },
            't3': {
                'low_offset': low_offset_t3.value,
                'high_offset': high_offset_t3.value,
                'calculate': ta.T3
            },
            'kama': {
                'low_offset': low_offset_kama.value,
                'high_offset': high_offset_kama.value,
                'calculate': ta.KAMA
            }
        }
    
        # Trailing stoploss (not used)
        trailing_stop = False
        trailing_only_offset_is_reached = True
        trailing_stop_positive = 0.01
        trailing_stop_positive_offset = 0.03
    
        use_custom_stoploss = False
    
        # Optimal timeframe for the strategy.
        timeframe = '5m'
        inf_1h = '1h'
    
        # Run "populate_indicators()" only for new candle.
        process_only_new_candles = True
    
        # These values can be overridden in the "ask_strategy" section in the config.
        use_sell_signal = True
        sell_profit_only = False
        ignore_roi_if_buy_signal = True
    
        # Number of candles the strategy requires before producing valid signals
        startup_candle_count: int = 300
    
        # plot config
        plot_config = {
            'main_plot': {
                'ma_offset_buy': {'color': 'orange'},
                'ma_offset_sell': {'color': 'orange'},
            },
        }
    
        #############################################################
    
        buy_condition_1_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_2_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_3_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_4_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_5_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_6_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_7_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_8_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_9_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_10_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_11_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_12_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_13_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_14_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_15_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_16_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_17_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_18_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_19_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_20_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
        buy_condition_21_enable = CategoricalParameter([True, False], default=True, space='buy', optimize=False, load=True)
    
        # Normal dips
        buy_dip_threshold_1 = DecimalParameter(0.001, 0.05, default=0.02, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_2 = DecimalParameter(0.01, 0.2, default=0.14, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_3 = DecimalParameter(0.05, 0.4, default=0.32, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_4 = DecimalParameter(0.2, 0.5, default=0.5, space='buy', decimals=3, optimize=False, load=True)
        # Strict dips
        buy_dip_threshold_5 = DecimalParameter(0.001, 0.05, default=0.015, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_6 = DecimalParameter(0.01, 0.2, default=0.06, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_7 = DecimalParameter(0.05, 0.4, default=0.24, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_8 = DecimalParameter(0.2, 0.5, default=0.4, space='buy', decimals=3, optimize=False, load=True)
        # Loose dips
        buy_dip_threshold_9 = DecimalParameter(0.001, 0.05, default=0.026, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_10 = DecimalParameter(0.01, 0.2, default=0.24, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_11 = DecimalParameter(0.05, 0.4, default=0.42, space='buy', decimals=3, optimize=False, load=True)
        buy_dip_threshold_12 = DecimalParameter(0.2, 0.5, default=0.66, space='buy', decimals=3, optimize=False, load=True)
    
        # 24 hours
        buy_pump_pull_threshold_1 = DecimalParameter(1.5, 3.0, default=1.75, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_1 = DecimalParameter(0.4, 1.0, default=0.5, space='buy', decimals=3, optimize=False, load=True)
        # 36 hours
        buy_pump_pull_threshold_2 = DecimalParameter(1.5, 3.0, default=1.75, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_2 = DecimalParameter(0.4, 1.0, default=0.56, space='buy', decimals=3, optimize=False, load=True)
        # 48 hours
        buy_pump_pull_threshold_3 = DecimalParameter(1.5, 3.0, default=1.75, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_3 = DecimalParameter(0.4, 1.0, default=0.85, space='buy', decimals=3, optimize=False, load=True)
    
        # 24 hours strict
        buy_pump_pull_threshold_4 = DecimalParameter(1.5, 3.0, default=2.2, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_4 = DecimalParameter(0.4, 1.0, default=0.4, space='buy', decimals=3, optimize=False, load=True)
        # 36 hours strict
        buy_pump_pull_threshold_5 = DecimalParameter(1.5, 3.0, default=2.0, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_5 = DecimalParameter(0.4, 1.0, default=0.56, space='buy', decimals=3, optimize=False, load=True)
        # 48 hours strict
        buy_pump_pull_threshold_6 = DecimalParameter(1.5, 3.0, default=2.0, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_6 = DecimalParameter(0.4, 1.0, default=0.68, space='buy', decimals=3, optimize=False, load=True)
    
        # 24 hours loose
        buy_pump_pull_threshold_7 = DecimalParameter(1.5, 3.0, default=1.7, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_7 = DecimalParameter(0.4, 1.0, default=0.66, space='buy', decimals=3, optimize=False, load=True)
        # 36 hours loose
        buy_pump_pull_threshold_8 = DecimalParameter(1.5, 3.0, default=1.7, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_8 = DecimalParameter(0.4, 1.0, default=0.7, space='buy', decimals=3, optimize=False, load=True)
        # 48 hours loose
        buy_pump_pull_threshold_9 = DecimalParameter(1.5, 3.0, default=1.4, space='buy', decimals=2, optimize=False, load=True)
        buy_pump_threshold_9 = DecimalParameter(0.4, 1.8, default=1.3, space='buy', decimals=3, optimize=False, load=True)
    
        buy_min_inc_1 = DecimalParameter(0.01, 0.05, default=0.022, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_1h_min_1 = DecimalParameter(25.0, 40.0, default=30.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_max_1 = DecimalParameter(70.0, 90.0, default=84.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1 = DecimalParameter(20.0, 40.0, default=36.0, space='buy', decimals=1, optimize=False, load=True)
        buy_mfi_1 = DecimalParameter(20.0, 40.0, default=26.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_2 = DecimalParameter(1.0, 10.0, default=2.6, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_min_2 = DecimalParameter(30.0, 40.0, default=32.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_max_2 = DecimalParameter(70.0, 95.0, default=84.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_diff_2 = DecimalParameter(30.0, 50.0, default=39.0, space='buy', decimals=1, optimize=False, load=True)
        buy_mfi_2 = DecimalParameter(30.0, 56.0, default=49.0, space='buy', decimals=1, optimize=False, load=True)
        buy_bb_offset_2 = DecimalParameter(0.97, 0.999, default=0.983, space='buy', decimals=3, optimize=False, load=True)
    
        buy_bb40_bbdelta_close_3 = DecimalParameter(0.005, 0.06, default=0.057, space='buy', optimize=False, load=True)
        buy_bb40_closedelta_close_3 = DecimalParameter(0.01, 0.03, default=0.023, space='buy', optimize=False, load=True)
        buy_bb40_tail_bbdelta_3 = DecimalParameter(0.15, 0.45, default=0.418, space='buy', optimize=False, load=True)
        buy_ema_rel_3 = DecimalParameter(0.97, 0.999, default=0.986, space='buy', decimals=3, optimize=False, load=True)
    
        buy_bb20_close_bblowerband_4 = DecimalParameter(0.96, 0.99, default=0.979, space='buy', optimize=False, load=True)
        buy_bb20_volume_4 = DecimalParameter(1.0, 20.0, default=10.0, space='buy', decimals=2, optimize=False, load=True)
    
        buy_ema_open_mult_5 = DecimalParameter(0.016, 0.03, default=0.019, space='buy', decimals=3, optimize=False, load=True)
        buy_bb_offset_5 = DecimalParameter(0.98, 1.0, default=0.999, space='buy', decimals=3, optimize=False, load=True)
        buy_ema_rel_5 = DecimalParameter(0.97, 0.999, default=0.982, space='buy', decimals=3, optimize=False, load=True)
    
        buy_ema_open_mult_6 = DecimalParameter(0.02, 0.03, default=0.025, space='buy', decimals=3, optimize=False, load=True)
        buy_bb_offset_6 = DecimalParameter(0.98, 0.999, default=0.984, space='buy', decimals=3, optimize=False, load=True)
    
        buy_volume_7 = DecimalParameter(1.0, 10.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ema_open_mult_7 = DecimalParameter(0.02, 0.04, default=0.03, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_7 = DecimalParameter(24.0, 50.0, default=36.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ema_rel_7 = DecimalParameter(0.97, 0.999, default=0.986, space='buy', decimals=3, optimize=False, load=True)
    
        buy_volume_8 = DecimalParameter(1.0, 6.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_8 = DecimalParameter(36.0, 40.0, default=20.0, space='buy', decimals=1, optimize=False, load=True)
        buy_tail_diff_8 = DecimalParameter(3.0, 10.0, default=3.5, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_9 = DecimalParameter(1.0, 4.0, default=1.0, space='buy', decimals=2, optimize=False, load=True)
        buy_ma_offset_9 = DecimalParameter(0.94, 0.99, default=0.97, space='buy', decimals=3, optimize=False, load=True)
        buy_bb_offset_9 = DecimalParameter(0.97, 0.99, default=0.985, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_1h_min_9 = DecimalParameter(26.0, 40.0, default=30.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_max_9 = DecimalParameter(70.0, 90.0, default=88.0, space='buy', decimals=1, optimize=False, load=True)
        buy_mfi_9 = DecimalParameter(36.0, 65.0, default=30.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_10 = DecimalParameter(1.0, 8.0, default=2.4, space='buy', decimals=1, optimize=False, load=True)
        buy_ma_offset_10 = DecimalParameter(0.93, 0.97, default=0.944, space='buy', decimals=3, optimize=False, load=True)
        buy_bb_offset_10 = DecimalParameter(0.97, 0.99, default=0.994, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_1h_10 = DecimalParameter(20.0, 40.0, default=37.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_ma_offset_11 = DecimalParameter(0.93, 0.99, default=0.939, space='buy', decimals=3, optimize=False, load=True)
        buy_min_inc_11 = DecimalParameter(0.005, 0.05, default=0.022, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_1h_min_11 = DecimalParameter(40.0, 60.0, default=56.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_max_11 = DecimalParameter(70.0, 90.0, default=84.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_11 = DecimalParameter(30.0, 48.0, default=48.0, space='buy', decimals=1, optimize=False, load=True)
        buy_mfi_11 = DecimalParameter(36.0, 56.0, default=38.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_12 = DecimalParameter(1.0, 10.0, default=1.7, space='buy', decimals=1, optimize=False, load=True)
        buy_ma_offset_12 = DecimalParameter(0.93, 0.97, default=0.936, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_12 = DecimalParameter(26.0, 40.0, default=30.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ewo_12 = DecimalParameter(2.0, 6.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_13 = DecimalParameter(1.0, 10.0, default=1.6, space='buy', decimals=1, optimize=False, load=True)
        buy_ma_offset_13 = DecimalParameter(0.93, 0.98, default=0.978, space='buy', decimals=3, optimize=False, load=True)
        buy_ewo_13 = DecimalParameter(-14.0, -7.0, default=-10.4, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_14 = DecimalParameter(1.0, 10.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ema_open_mult_14 = DecimalParameter(0.01, 0.03, default=0.014, space='buy', decimals=3, optimize=False, load=True)
        buy_bb_offset_14 = DecimalParameter(0.98, 1.0, default=0.986, space='buy', decimals=3, optimize=False, load=True)
        buy_ma_offset_14 = DecimalParameter(0.93, 0.99, default=0.97, space='buy', decimals=3, optimize=False, load=True)
    
        buy_volume_15 = DecimalParameter(1.0, 10.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ema_open_mult_15 = DecimalParameter(0.02, 0.04, default=0.018, space='buy', decimals=3, optimize=False, load=True)
        buy_ma_offset_15 = DecimalParameter(0.93, 0.99, default=0.954, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_15 = DecimalParameter(30.0, 50.0, default=28.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ema_rel_15 = DecimalParameter(0.97, 0.999, default=0.988, space='buy', decimals=3, optimize=False, load=True)
    
        buy_volume_16 = DecimalParameter(1.0, 10.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ma_offset_16 = DecimalParameter(0.93, 0.97, default=0.952, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_16 = DecimalParameter(26.0, 50.0, default=31.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ewo_16 = DecimalParameter(4.0, 8.0, default=2.8, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_17 = DecimalParameter(0.5, 8.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_ma_offset_17 = DecimalParameter(0.93, 0.98, default=0.958, space='buy', decimals=3, optimize=False, load=True)
        buy_ewo_17 = DecimalParameter(-18.0, -10.0, default=-12.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_18 = DecimalParameter(1.0, 6.0, default=2.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_18 = DecimalParameter(16.0, 32.0, default=26.0, space='buy', decimals=1, optimize=False, load=True)
        buy_bb_offset_18 = DecimalParameter(0.98, 1.0, default=0.982, space='buy', decimals=3, optimize=False, load=True)
    
        buy_rsi_1h_min_19 = DecimalParameter(40.0, 70.0, default=50.0, space='buy', decimals=1, optimize=True, load=True)
        buy_chop_min_19 = DecimalParameter(20.0, 60.0, default=24.1, space='buy', decimals=1, optimize=True, load=True)
    
        buy_volume_20 = DecimalParameter(0.5, 6.0, default=1.2, space='buy', decimals=1, optimize=False, load=True)
        #buy_ema_rel_20 = DecimalParameter(0.97, 0.999, default=0.988, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_20 = DecimalParameter(20.0, 36.0, default=26.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_20 = DecimalParameter(14.0, 30.0, default=20.0, space='buy', decimals=1, optimize=False, load=True)
    
        buy_volume_21 = DecimalParameter(0.5, 6.0, default=3.0, space='buy', decimals=1, optimize=False, load=True)
        #buy_ema_rel_21 = DecimalParameter(0.97, 0.999, default=0.988, space='buy', decimals=3, optimize=False, load=True)
        buy_rsi_21 = DecimalParameter(10.0, 28.0, default=23.0, space='buy', decimals=1, optimize=False, load=True)
        buy_rsi_1h_21 = DecimalParameter(18.0, 40.0, default=24.0, space='buy', decimals=1, optimize=False, load=True)
    
        # Sell
    
        sell_condition_1_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_2_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_3_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_4_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_5_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_6_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_7_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
        sell_condition_8_enable = CategoricalParameter([True, False], default=True, space='sell', optimize=False, load=True)
    
        sell_rsi_bb_1 = DecimalParameter(60.0, 80.0, default=79.5, space='sell', decimals=1, optimize=False, load=True)
    
        sell_rsi_bb_2 = DecimalParameter(72.0, 90.0, default=81, space='sell', decimals=1, optimize=False, load=True)
    
        sell_rsi_main_3 = DecimalParameter(77.0, 90.0, default=82, space='sell', decimals=1, optimize=False, load=True)
    
        sell_dual_rsi_rsi_4 = DecimalParameter(72.0, 84.0, default=73.4, space='sell', decimals=1, optimize=False, load=True)
        sell_dual_rsi_rsi_1h_4 = DecimalParameter(78.0, 92.0, default=79.6, space='sell', decimals=1, optimize=False, load=True)
    
        sell_ema_relative_5 = DecimalParameter(0.005, 0.05, default=0.024, space='sell', optimize=False, load=True)
        sell_rsi_diff_5 = DecimalParameter(0.0, 20.0, default=4.4, space='sell', optimize=False, load=True)
    
        sell_rsi_under_6 = DecimalParameter(72.0, 90.0, default=79.0, space='sell', decimals=1, optimize=False, load=True)
    
        sell_rsi_1h_7 = DecimalParameter(80.0, 95.0, default=81.7, space='sell', decimals=1, optimize=False, load=True)
    
        sell_bb_relative_8 = DecimalParameter(1.05, 1.3, default=1.1, space='sell', decimals=3, optimize=False, load=True)
    
        sell_custom_profit_0 = DecimalParameter(0.01, 0.1, default=0.01, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_rsi_0 = DecimalParameter(30.0, 40.0, default=33.0, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_profit_1 = DecimalParameter(0.01, 0.1, default=0.03, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_rsi_1 = DecimalParameter(30.0, 50.0, default=38.0, space='sell', decimals=2, optimize=False, load=True)
        sell_custom_profit_2 = DecimalParameter(0.01, 0.1, default=0.05, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_rsi_2 = DecimalParameter(34.0, 50.0, default=43.0, space='sell', decimals=2, optimize=False, load=True)
        sell_custom_profit_3 = DecimalParameter(0.06, 0.30, default=0.08, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_rsi_3 = DecimalParameter(38.0, 55.0, default=48.0, space='sell', decimals=2, optimize=False, load=True)
        sell_custom_profit_4 = DecimalParameter(0.3, 0.6, default=0.25, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_rsi_4 = DecimalParameter(40.0, 58.0, default=50.0, space='sell', decimals=2, optimize=False, load=True)
    
        sell_custom_under_profit_1 = DecimalParameter(0.01, 0.10, default=0.02, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_under_rsi_1 = DecimalParameter(36.0, 60.0, default=56.0, space='sell', decimals=1, optimize=False, load=True)
        sell_custom_under_profit_2 = DecimalParameter(0.01, 0.10, default=0.04, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_under_rsi_2 = DecimalParameter(46.0, 66.0, default=60.0, space='sell', decimals=1, optimize=False, load=True)
        sell_custom_under_profit_3 = DecimalParameter(0.01, 0.10, default=0.6, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_under_rsi_3 = DecimalParameter(50.0, 68.0, default=62.0, space='sell', decimals=1, optimize=False, load=True)
    
        sell_custom_dec_profit_1 = DecimalParameter(0.01, 0.10, default=0.05, space='sell', decimals=3, optimize=False, load=True)
        sell_custom_dec_profit_2 = DecimalParameter(0.05, 0.2, default=0.07, space='sell', decimals=3, optimize=False, load=True)
    
        sell_trail_profit_min_1 = DecimalParameter(0.1, 0.25, default=0.15, space='sell', decimals=3, optimize=False, load=True)
        sell_trail_profit_max_1 = DecimalParameter(0.3, 0.5, default=0.46, space='sell', decimals=2, optimize=False, load=True)
        sell_trail_down_1 = DecimalParameter(0.04, 0.2, default=0.18, space='sell', decimals=3, optimize=False, load=True)
    
        sell_trail_profit_min_2 = DecimalParameter(0.01, 0.1, default=0.01, space='sell', decimals=3, optimize=False, load=True)
        sell_trail_profit_max_2 = DecimalParameter(0.08, 0.25, default=0.12, space='sell', decimals=2, optimize=False, load=True)
        sell_trail_down_2 = DecimalParameter(0.04, 0.2, default=0.14, space='sell', decimals=3, optimize=False, load=True)
    
        sell_trail_profit_min_3 = DecimalParameter(0.01, 0.1, default=0.05, space='sell', decimals=3, optimize=False, load=True)
        sell_trail_profit_max_3 = DecimalParameter(0.08, 0.16, default=0.1, space='sell', decimals=2, optimize=False, load=True)
        sell_trail_down_3 = DecimalParameter(0.01, 0.04, default=0.01, space='sell', decimals=3, optimize=False, load=True)
    
        sell_custom_profit_under_rel_1 = DecimalParameter(0.01, 0.04, default=0.024, space='sell', optimize=False, load=True)
        sell_custom_profit_under_rsi_diff_1 = DecimalParameter(0.0, 20.0, default=4.4, space='sell', optimize=False, load=True)
    
        sell_custom_stoploss_under_rel_1 = DecimalParameter(0.001, 0.02, default=0.004, space='sell', optimize=False, load=True)
        sell_custom_stoploss_under_rsi_diff_1 = DecimalParameter(0.0, 20.0, default=8.0, space='sell', optimize=False, load=True)
    
        #############################################################
    
        def get_ticker_indicator(self):
            return int(self.timeframe[:-1])
    
    
        def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
                        current_profit: float, **kwargs):
            dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
            last_candle = dataframe.iloc[-1].squeeze()
    
            max_profit = ((trade.max_rate - trade.open_rate) / trade.open_rate)
    
            if (last_candle is not None):
                if (current_profit > self.sell_custom_profit_4.value) & (last_candle['rsi'] < self.sell_custom_rsi_4.value):
                    return 'signal_profit_4'
                elif (current_profit > self.sell_custom_profit_3.value) & (last_candle['rsi'] < self.sell_custom_rsi_3.value):
                    return 'signal_profit_3'
                elif (current_profit > self.sell_custom_profit_2.value) & (last_candle['rsi'] < self.sell_custom_rsi_2.value):
                    return 'signal_profit_2'
                elif (current_profit > self.sell_custom_profit_1.value) & (last_candle['rsi'] < self.sell_custom_rsi_1.value):
                    return 'signal_profit_1'
                elif (current_profit > self.sell_custom_profit_0.value) & (last_candle['rsi'] < self.sell_custom_rsi_0.value):
                    return 'signal_profit_0'
    
                elif (current_profit > self.sell_custom_under_profit_1.value) & (last_candle['rsi'] < self.sell_custom_under_rsi_1.value) & (last_candle['close'] < last_candle['ema_200']):
                    return 'signal_profit_u_1'
                elif (current_profit > self.sell_custom_under_profit_2.value) & (last_candle['rsi'] < self.sell_custom_under_rsi_2.value) & (last_candle['close'] < last_candle['ema_200']):
                    return 'signal_profit_u_2'
                elif (current_profit > self.sell_custom_under_profit_3.value) & (last_candle['rsi'] < self.sell_custom_under_rsi_3.value) & (last_candle['close'] < last_candle['ema_200']):
                    return 'signal_profit_u_3'
    
                elif (current_profit > self.sell_custom_dec_profit_1.value) & (last_candle['sma_200_dec']):
                    return 'signal_profit_d_1'
                elif (current_profit > self.sell_custom_dec_profit_2.value) & (last_candle['close'] < last_candle['ema_100']):
                    return 'signal_profit_d_2'
    
                elif (current_profit > self.sell_trail_profit_min_1.value) & (current_profit < self.sell_trail_profit_max_1.value) & (max_profit > (current_profit + self.sell_trail_down_1.value)):
                    return 'signal_profit_t_1'
                elif (current_profit > self.sell_trail_profit_min_2.value) & (current_profit < self.sell_trail_profit_max_2.value) & (max_profit > (current_profit + self.sell_trail_down_2.value)):
                    return 'signal_profit_t_2'
    
                elif (last_candle['close'] < last_candle['ema_200']) & (current_profit > self.sell_trail_profit_min_3.value) & (current_profit < self.sell_trail_profit_max_3.value) & (max_profit > (current_profit + self.sell_trail_down_3.value)):
                    return 'signal_profit_u_t_1'
    
                elif (current_profit > 0.0) & (last_candle['close'] < last_candle['ema_200']) & (((last_candle['ema_200'] - last_candle['close']) / last_candle['close']) < self.sell_custom_profit_under_rel_1.value) & (last_candle['rsi'] > last_candle['rsi_1h'] + self.sell_custom_profit_under_rsi_diff_1.value):
                    return 'signal_profit_u_e_1'
    
                elif (current_profit < -0.0) & (last_candle['close'] < last_candle['ema_200']) & (((last_candle['ema_200'] - last_candle['close']) / last_candle['close']) < self.sell_custom_stoploss_under_rel_1.value) & (last_candle['rsi'] > last_candle['rsi_1h'] + self.sell_custom_stoploss_under_rsi_diff_1.value):
                    return 'signal_stoploss_u_1'
    
            return None
    
        def informative_pairs(self):
            # get access to all pairs available in whitelist.
            pairs = self.dp.current_whitelist()
            # Assign tf to each pair so they can be downloaded and cached for strategy.
            informative_pairs = [(pair, '1h') for pair in pairs]
            return informative_pairs
    
        def informative_1h_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            assert self.dp, "DataProvider is required for multiple timeframes."
            # Get the informative pair
            informative_1h = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_1h)
            # EMA
            informative_1h['ema_15'] = ta.EMA(informative_1h, timeperiod=15)
            informative_1h['ema_50'] = ta.EMA(informative_1h, timeperiod=50)
            informative_1h['ema_100'] = ta.EMA(informative_1h, timeperiod=100)
            informative_1h['ema_200'] = ta.EMA(informative_1h, timeperiod=200)
            # SMA
            informative_1h['sma_200'] = ta.SMA(informative_1h, timeperiod=200)
            # RSI
            informative_1h['rsi'] = ta.RSI(informative_1h, timeperiod=14)
            # BB
            bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative_1h), window=20, stds=2)
            informative_1h['bb_lowerband'] = bollinger['lower']
            informative_1h['bb_middleband'] = bollinger['mid']
            informative_1h['bb_upperband'] = bollinger['upper']
            # Pump protections
            informative_1h['safe_pump_24'] = ((((informative_1h['open'].rolling(24).max() - informative_1h['close'].rolling(24).min()) / informative_1h['close'].rolling(24).min()) < self.buy_pump_threshold_1.value) | (((informative_1h['open'].rolling(24).max() - informative_1h['close'].rolling(24).min()) / self.buy_pump_pull_threshold_1.value) > (informative_1h['close'] - informative_1h['close'].rolling(24).min())))
            informative_1h['safe_pump_36'] = ((((informative_1h['open'].rolling(36).max() - informative_1h['close'].rolling(36).min()) / informative_1h['close'].rolling(36).min()) < self.buy_pump_threshold_2.value) | (((informative_1h['open'].rolling(36).max() - informative_1h['close'].rolling(36).min()) / self.buy_pump_pull_threshold_2.value) > (informative_1h['close'] - informative_1h['close'].rolling(36).min())))
            informative_1h['safe_pump_48'] = ((((informative_1h['open'].rolling(48).max() - informative_1h['close'].rolling(48).min()) / informative_1h['close'].rolling(48).min()) < self.buy_pump_threshold_3.value) | (((informative_1h['open'].rolling(48).max() - informative_1h['close'].rolling(48).min()) / self.buy_pump_pull_threshold_3.value) > (informative_1h['close'] - informative_1h['close'].rolling(48).min())))
    
            informative_1h['safe_pump_24_strict'] = ((((informative_1h['open'].rolling(24).max() - informative_1h['close'].rolling(24).min()) / informative_1h['close'].rolling(24).min()) < self.buy_pump_threshold_4.value) | (((informative_1h['open'].rolling(24).max() - informative_1h['close'].rolling(24).min()) / self.buy_pump_pull_threshold_4.value) > (informative_1h['close'] - informative_1h['close'].rolling(24).min())))
            informative_1h['safe_pump_36_strict'] = ((((informative_1h['open'].rolling(36).max() - informative_1h['close'].rolling(36).min()) / informative_1h['close'].rolling(36).min()) < self.buy_pump_threshold_5.value) | (((informative_1h['open'].rolling(36).max() - informative_1h['close'].rolling(36).min()) / self.buy_pump_pull_threshold_5.value) > (informative_1h['close'] - informative_1h['close'].rolling(36).min())))
            informative_1h['safe_pump_48_strict'] = ((((informative_1h['open'].rolling(48).max() - informative_1h['close'].rolling(48).min()) / informative_1h['close'].rolling(48).min()) < self.buy_pump_threshold_6.value) | (((informative_1h['open'].rolling(48).max() - informative_1h['close'].rolling(48).min()) / self.buy_pump_pull_threshold_6.value) > (informative_1h['close'] - informative_1h['close'].rolling(48).min())))
    
            informative_1h['safe_pump_24_loose'] = ((((informative_1h['open'].rolling(24).max() - informative_1h['close'].rolling(24).min()) / informative_1h['close'].rolling(24).min()) < self.buy_pump_threshold_7.value) | (((informative_1h['open'].rolling(24).max() - informative_1h['close'].rolling(24).min()) / self.buy_pump_pull_threshold_7.value) > (informative_1h['close'] - informative_1h['close'].rolling(24).min())))
            informative_1h['safe_pump_36_loose'] = ((((informative_1h['open'].rolling(36).max() - informative_1h['close'].rolling(36).min()) / informative_1h['close'].rolling(36).min()) < self.buy_pump_threshold_8.value) | (((informative_1h['open'].rolling(36).max() - informative_1h['close'].rolling(36).min()) / self.buy_pump_pull_threshold_8.value) > (informative_1h['close'] - informative_1h['close'].rolling(36).min())))
            informative_1h['safe_pump_48_loose'] = ((((informative_1h['open'].rolling(48).max() - informative_1h['close'].rolling(48).min()) / informative_1h['close'].rolling(48).min()) < self.buy_pump_threshold_9.value) | (((informative_1h['open'].rolling(48).max() - informative_1h['close'].rolling(48).min()) / self.buy_pump_pull_threshold_9.value) > (informative_1h['close'] - informative_1h['close'].rolling(48).min())))
    
            return informative_1h
    
        def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            # BB 40
            bb_40 = qtpylib.bollinger_bands(dataframe['close'], window=40, stds=2)
            dataframe['lower'] = bb_40['lower']
            dataframe['mid'] = bb_40['mid']
            dataframe['bbdelta'] = (bb_40['mid'] - dataframe['lower']).abs()
            dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
            dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()
    
            # BB 20
            bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
            dataframe['bb_lowerband'] = bollinger['lower']
            dataframe['bb_middleband'] = bollinger['mid']
            dataframe['bb_upperband'] = bollinger['upper']
    
            # EMA 200
            dataframe['ema_12'] = ta.EMA(dataframe, timeperiod=12)
            dataframe['ema_20'] = ta.EMA(dataframe, timeperiod=20)
            dataframe['ema_26'] = ta.EMA(dataframe, timeperiod=26)
            dataframe['ema_50'] = ta.EMA(dataframe, timeperiod=50)
            dataframe['ema_100'] = ta.EMA(dataframe, timeperiod=100)
            dataframe['ema_200'] = ta.EMA(dataframe, timeperiod=200)
    
            # SMA
            dataframe['sma_5'] = ta.SMA(dataframe, timeperiod=5)
            dataframe['sma_30'] = ta.SMA(dataframe, timeperiod=30)
            dataframe['sma_200'] = ta.SMA(dataframe, timeperiod=200)
    
            dataframe['sma_200_dec'] = dataframe['sma_200'] < dataframe['sma_200'].shift(20)
    
            # MFI
            dataframe['mfi'] = ta.MFI(dataframe)
    
            # EWO
            dataframe['ewo'] = EWO(dataframe, self.fast_ewo.value, self.slow_ewo.value)
    
            # RSI
            dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
    
            # Chopiness
            dataframe['chop']= qtpylib.chopiness(dataframe, 14)
    
            # Dip protection
            dataframe['safe_dips'] = ((((dataframe['open'] - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_1.value) &
                                      (((dataframe['open'].rolling(2).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_2.value) &
                                      (((dataframe['open'].rolling(12).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_3.value) &
                                      (((dataframe['open'].rolling(144).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_4.value))
    
            dataframe['safe_dips_strict'] = ((((dataframe['open'] - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_5.value) &
                                      (((dataframe['open'].rolling(2).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_6.value) &
                                      (((dataframe['open'].rolling(12).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_7.value) &
                                      (((dataframe['open'].rolling(144).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_8.value))
    
            dataframe['safe_dips_loose'] = ((((dataframe['open'] - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_9.value) &
                                      (((dataframe['open'].rolling(2).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_10.value) &
                                      (((dataframe['open'].rolling(12).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_11.value) &
                                      (((dataframe['open'].rolling(144).max() - dataframe['close']) / dataframe['close']) < self.buy_dip_threshold_12.value))
    
            # Volume
            dataframe['volume_mean_4'] = dataframe['volume'].rolling(4).mean().shift(1)
            dataframe['volume_mean_30'] = dataframe['volume'].rolling(30).mean()
    
            # Offset
            for i in self.ma_types:
                dataframe[f'{i}_offset_buy'] = self.ma_map[f'{i}']['calculate'](
                    dataframe, self.base_nb_candles_buy.value) * \
                    self.ma_map[f'{i}']['low_offset']
                dataframe[f'{i}_offset_sell'] = self.ma_map[f'{i}']['calculate'](
                    dataframe, self.base_nb_candles_sell.value) * \
                    self.ma_map[f'{i}']['high_offset']
    
            return dataframe
    
        def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            # The indicators for the 1h informative timeframe
            informative_1h = self.informative_1h_indicators(dataframe, metadata)
            dataframe = merge_informative_pair(dataframe, informative_1h, self.timeframe, self.inf_1h, ffill=True)
    
            # The indicators for the normal (5m) timeframe
            dataframe = self.normal_tf_indicators(dataframe, metadata)
    
            return dataframe
    
    
        def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            conditions = []
    
            conditions.append(
                (
                    self.buy_condition_1_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
                    (dataframe['sma_200'] > dataframe['sma_200'].shift(50)) &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_1h']) &
    
                    (((dataframe['close'] - dataframe['open'].rolling(36).min()) / dataframe['open'].rolling(36).min()) > self.buy_min_inc_1.value) &
                    (dataframe['rsi_1h'] > self.buy_rsi_1h_min_1.value) &
                    (dataframe['rsi_1h'] < self.buy_rsi_1h_max_1.value) &
                    (dataframe['rsi'] < self.buy_rsi_1.value) &
                    (dataframe['mfi'] < self.buy_mfi_1.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_2_enable.value &
    
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(50)) &
    
                    (dataframe['safe_pump_24_strict_1h']) &
    
                    (dataframe['volume_mean_4'] * self.buy_volume_2.value > dataframe['volume']) &
    
                    #(dataframe['rsi_1h'] > self.buy_rsi_1h_min_2.value) &
                    #(dataframe['rsi_1h'] < self.buy_rsi_1h_max_2.value) &
                    (dataframe['rsi'] < dataframe['rsi_1h'] - self.buy_rsi_1h_diff_2.value) &
                    (dataframe['mfi'] < self.buy_mfi_2.value) &
                    (dataframe['close'] < (dataframe['bb_lowerband'] * self.buy_bb_offset_2.value)) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_3_enable.value &
    
                    (dataframe['close'] > (dataframe['ema_200_1h'] * self.buy_ema_rel_3.value)) &
                    (dataframe['ema_100'] > dataframe['ema_200']) &
                    (dataframe['ema_100_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_pump_36_strict_1h']) &
    
                    dataframe['lower'].shift().gt(0) &
                    dataframe['bbdelta'].gt(dataframe['close'] * self.buy_bb40_bbdelta_close_3.value) &
                    dataframe['closedelta'].gt(dataframe['close'] * self.buy_bb40_closedelta_close_3.value) &
                    dataframe['tail'].lt(dataframe['bbdelta'] * self.buy_bb40_tail_bbdelta_3.value) &
                    dataframe['close'].lt(dataframe['lower'].shift()) &
                    dataframe['close'].le(dataframe['close'].shift()) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_4_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_1h']) &
    
                    (dataframe['close'] < dataframe['ema_50']) &
                    (dataframe['close'] < self.buy_bb20_close_bblowerband_4.value * dataframe['bb_lowerband']) &
                    (dataframe['volume'] < (dataframe['volume_mean_30'].shift(1) * self.buy_bb20_volume_4.value))
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_5_enable.value &
    
                    (dataframe['ema_100'] > dataframe['ema_200']) &
                    (dataframe['close'] > (dataframe['ema_200_1h'] * self.buy_ema_rel_5.value)) &
    
                    (dataframe['safe_dips']) &
                    (dataframe['safe_pump_36_strict_1h']) &
    
                    (dataframe['ema_26'] > dataframe['ema_12']) &
                    ((dataframe['ema_26'] - dataframe['ema_12']) > (dataframe['open'] * self.buy_ema_open_mult_5.value)) &
                    ((dataframe['ema_26'].shift() - dataframe['ema_12'].shift()) > (dataframe['open'] / 100)) &
                    (dataframe['close'] < (dataframe['bb_lowerband'] * self.buy_bb_offset_5.value)) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_6_enable.value &
    
                    (dataframe['ema_100_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips_loose']) &
                    (dataframe['safe_pump_36_strict_1h']) &
    
                    (dataframe['ema_26'] > dataframe['ema_12']) &
                    ((dataframe['ema_26'] - dataframe['ema_12']) > (dataframe['open'] * self.buy_ema_open_mult_6.value)) &
                    ((dataframe['ema_26'].shift() - dataframe['ema_12'].shift()) > (dataframe['open'] / 100)) &
                    (dataframe['close'] < (dataframe['bb_lowerband'] * self.buy_bb_offset_6.value)) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_7_enable.value &
    
                    (dataframe['ema_100'] > dataframe['ema_200']) &
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips_strict']) &
    
                    (dataframe['volume'].rolling(4).mean() * self.buy_volume_7.value > dataframe['volume']) &
    
                    (dataframe['ema_26'] > dataframe['ema_12']) &
                    ((dataframe['ema_26'] - dataframe['ema_12']) > (dataframe['open'] * self.buy_ema_open_mult_7.value)) &
                    ((dataframe['ema_26'].shift() - dataframe['ema_12'].shift()) > (dataframe['open'] / 100)) &
                    (dataframe['rsi'] < self.buy_rsi_7.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_8_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips_loose']) &
                    (dataframe['safe_pump_24_1h']) &
    
                    (dataframe['rsi'] < self.buy_rsi_8.value) &
                    (dataframe['volume'] > (dataframe['volume'].shift(1) * self.buy_volume_8.value)) &
                    (dataframe['close'] > dataframe['open']) &
                    ((dataframe['close'] - dataframe['low']) > ((dataframe['close'] - dataframe['open']) * self.buy_tail_diff_8.value)) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_9_enable.value &
    
                    (dataframe['ema_50'] > dataframe['ema_200']) &
                    (dataframe['ema_100'] > dataframe['ema_200']) &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_loose_1h']) &
    
                    (dataframe['volume_mean_4'] * self.buy_volume_9.value > dataframe['volume']) &
    
                    (dataframe['close'] < dataframe['ema_20'] * self.buy_ma_offset_9.value) &
                    (dataframe['close'] < dataframe['bb_lowerband'] * self.buy_bb_offset_9.value) &
                    (dataframe['rsi_1h'] > self.buy_rsi_1h_min_9.value) &
                    (dataframe['rsi_1h'] < self.buy_rsi_1h_max_9.value) &
                    (dataframe['mfi'] < self.buy_mfi_9.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_10_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_100_1h']) &
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(24)) &
    
                    (dataframe['safe_dips_loose']) &
                    (dataframe['safe_pump_24_loose_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_10.value) > dataframe['volume']) &
    
                    (dataframe['close'] < dataframe['sma_30'] * self.buy_ma_offset_10.value) &
                    (dataframe['close'] < dataframe['bb_lowerband'] * self.buy_bb_offset_10.value) &
                    (dataframe['rsi_1h'] < self.buy_rsi_1h_10.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_11_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_100_1h']) &
    
                    (dataframe['safe_dips_loose']) &
                    (dataframe['safe_pump_24_loose_1h']) &
                    (dataframe['safe_pump_36_1h']) &
                    (dataframe['safe_pump_48_loose_1h']) &
    
                    (((dataframe['close'] - dataframe['open'].rolling(36).min()) / dataframe['open'].rolling(36).min()) > self.buy_min_inc_11.value) &
                    (dataframe['close'] < dataframe['sma_30'] * self.buy_ma_offset_11.value) &
                    (dataframe['rsi_1h'] > self.buy_rsi_1h_min_11.value) &
                    (dataframe['rsi_1h'] < self.buy_rsi_1h_max_11.value) &
                    (dataframe['rsi'] < self.buy_rsi_11.value) &
                    (dataframe['mfi'] < self.buy_mfi_11.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_12_enable.value &
    
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(24)) &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_12.value) > dataframe['volume']) &
    
                    (dataframe['close'] < dataframe['sma_30'] * self.buy_ma_offset_12.value) &
                    (dataframe['ewo'] > self.buy_ewo_12.value) &
                    (dataframe['rsi'] < self.buy_rsi_12.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_13_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_100_1h']) &
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(24)) &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_loose_1h']) &
                    (dataframe['safe_pump_36_loose_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_13.value) > dataframe['volume']) &
    
                    (dataframe['close'] < dataframe['sma_30'] * self.buy_ma_offset_13.value) &
                    (dataframe['ewo'] < self.buy_ewo_13.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_14_enable.value &
    
                    (dataframe['sma_200'] > dataframe['sma_200'].shift(30)) &
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(50)) &
    
                    (dataframe['safe_dips_loose']) &
                    (dataframe['safe_pump_24_1h']) &
    
                    (dataframe['volume_mean_4'] * self.buy_volume_14.value > dataframe['volume']) &
    
                    (dataframe['ema_26'] > dataframe['ema_12']) &
                    ((dataframe['ema_26'] - dataframe['ema_12']) > (dataframe['open'] * self.buy_ema_open_mult_14.value)) &
                    ((dataframe['ema_26'].shift() - dataframe['ema_12'].shift()) > (dataframe['open'] / 100)) &
                    (dataframe['close'] < (dataframe['bb_lowerband'] * self.buy_bb_offset_14.value)) &
                    (dataframe['close'] < dataframe['ema_20'] * self.buy_ma_offset_14.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_15_enable.value &
    
                    (dataframe['close'] > dataframe['ema_200_1h'] * self.buy_ema_rel_15.value) &
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips']) &
                    (dataframe['safe_pump_36_strict_1h']) &
    
                    (dataframe['ema_26'] > dataframe['ema_12']) &
                    ((dataframe['ema_26'] - dataframe['ema_12']) > (dataframe['open'] * self.buy_ema_open_mult_15.value)) &
                    ((dataframe['ema_26'].shift() - dataframe['ema_12'].shift()) > (dataframe['open'] / 100)) &
                    (dataframe['rsi'] < self.buy_rsi_15.value) &
                    (dataframe['close'] < dataframe['ema_20'] * self.buy_ma_offset_15.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_16_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_strict_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_16.value) > dataframe['volume']) &
    
                    (dataframe['close'] < dataframe['ema_20'] * self.buy_ma_offset_16.value) &
                    (dataframe['ewo'] > self.buy_ewo_16.value) &
                    (dataframe['rsi'] < self.buy_rsi_16.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_17_enable.value &
    
                    (dataframe['safe_dips_strict']) &
                    (dataframe['safe_pump_24_loose_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_17.value) > dataframe['volume']) &
    
                    (dataframe['close'] < dataframe['ema_20'] * self.buy_ma_offset_17.value) &
                    (dataframe['ewo'] < self.buy_ewo_17.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_18_enable.value &
    
                    (dataframe['close'] > dataframe['ema_200_1h']) &
                    (dataframe['ema_100'] > dataframe['ema_200']) &
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
                    (dataframe['sma_200'] > dataframe['sma_200'].shift(20)) &
                    (dataframe['sma_200'] > dataframe['sma_200'].shift(44)) &
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(36)) &
                    (dataframe['sma_200_1h'] > dataframe['sma_200_1h'].shift(72)) &
    
                    (dataframe['safe_dips']) &
                    (dataframe['safe_pump_24_strict_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_18.value) > dataframe['volume']) &
    
                    (dataframe['rsi'] < self.buy_rsi_18.value) &
                    (dataframe['close'] < (dataframe['bb_lowerband'] * self.buy_bb_offset_18.value)) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_19_enable.value &
    
                    (dataframe['ema_100_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['sma_200'] > dataframe['sma_200'].shift(36)) &
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips']) &
                    (dataframe['safe_pump_24_1h']) &
    
                    (dataframe['close'].shift(1) > dataframe['ema_100_1h']) &
                    (dataframe['low'] < dataframe['ema_100_1h']) &
                    (dataframe['close'] > dataframe['ema_100_1h']) &
                    (dataframe['rsi_1h'] > self.buy_rsi_1h_min_19.value) &
                    (dataframe['chop'] < self.buy_chop_min_19.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_20_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips']) &
                    (dataframe['safe_pump_24_loose_1h']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_20.value) > dataframe['volume']) &
    
                    (dataframe['rsi'] < self.buy_rsi_20.value) &
                    (dataframe['rsi_1h'] < self.buy_rsi_1h_20.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.buy_condition_21_enable.value &
    
                    (dataframe['ema_50_1h'] > dataframe['ema_200_1h']) &
    
                    (dataframe['safe_dips_strict']) &
    
                    ((dataframe['volume_mean_4'] * self.buy_volume_21.value) > dataframe['volume']) &
    
                    (dataframe['rsi'] < self.buy_rsi_21.value) &
                    (dataframe['rsi_1h'] < self.buy_rsi_1h_21.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            for i in self.ma_types:
                conditions.append(
                    (
                        dataframe['close'] < dataframe[f'{i}_offset_buy']) &
                    (
                        (dataframe['ewo'] < self.ewo_low.value) |
                        (dataframe['ewo'] > self.ewo_high.value)
                    ) &
                    (dataframe['volume'] > 0)
            )
    
            if conditions:
                dataframe.loc[
                    reduce(lambda x, y: x | y, conditions),
                    'buy'
                ] = 1
    
            return dataframe
    
        def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
            conditions = []
    
            conditions.append(
                (
                    self.sell_condition_1_enable.value &
    
                    (dataframe['rsi'] > self.sell_rsi_bb_1.value) &
                    (dataframe['close'] > dataframe['bb_upperband']) &
                    (dataframe['close'].shift(1) > dataframe['bb_upperband'].shift(1)) &
                    (dataframe['close'].shift(2) > dataframe['bb_upperband'].shift(2)) &
                    (dataframe['close'].shift(3) > dataframe['bb_upperband'].shift(3)) &
                    (dataframe['close'].shift(4) > dataframe['bb_upperband'].shift(4)) &
                    (dataframe['close'].shift(5) > dataframe['bb_upperband'].shift(5)) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.sell_condition_2_enable.value &
    
                    (dataframe['rsi'] > self.sell_rsi_bb_2.value) &
                    (dataframe['close'] > dataframe['bb_upperband']) &
                    (dataframe['close'].shift(1) > dataframe['bb_upperband'].shift(1)) &
                    (dataframe['close'].shift(2) > dataframe['bb_upperband'].shift(2)) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.sell_condition_3_enable.value &
    
                    (dataframe['rsi'] > self.sell_rsi_main_3.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.sell_condition_4_enable.value &
    
                    (dataframe['rsi'] > self.sell_dual_rsi_rsi_4.value) &
                    (dataframe['rsi_1h'] > self.sell_dual_rsi_rsi_1h_4.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.sell_condition_6_enable.value &
    
                    (dataframe['close'] < dataframe['ema_200']) &
                    (dataframe['close'] > dataframe['ema_50']) &
                    (dataframe['rsi'] > self.sell_rsi_under_6.value) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.sell_condition_7_enable.value &
    
                    (dataframe['rsi_1h'] > self.sell_rsi_1h_7.value) &
                    qtpylib.crossed_below(dataframe['ema_12'], dataframe['ema_26']) &
                    (dataframe['volume'] > 0)
                )
            )
    
            conditions.append(
                (
                    self.sell_condition_8_enable.value &
    
                    (dataframe['close'] > dataframe['bb_upperband_1h'] * self.sell_bb_relative_8.value) &
    
                    (dataframe['volume'] > 0)
                )
            )
    
            """
    	for i in self.ma_types:
                conditions.append(
                    (
                        (dataframe['close'] > dataframe[f'{i}_offset_sell']) &
                        (dataframe['volume'] > 0)
                    )
            )
    	"""
    
            if conditions:
                dataframe.loc[
                    reduce(lambda x, y: x | y, conditions),
                    'sell'
                ] = 1
    
            return dataframe
    
    
    # Elliot Wave Oscillator
    def EWO(dataframe, sma1_length=5, sma2_length=35):
        df = dataframe.copy()
        sma1 = ta.EMA(df, timeperiod=sma1_length)
        sma2 = ta.EMA(df, timeperiod=sma2_length)
        smadif = (sma1 - sma2) / df['close'] * 100
        return smadif